数据结构时间复杂度题库

1、下列说法正确的是:

 A、如果函数f(n)是O(g(n)),g(n)是O(h(n)),那么f(n)是O(h(n))

解析:

 B、如果函数f(n)是O(g(n)),g(n)是O(h(n)),那么f(n)+g(n)是O(h(n))

解析:

 C、如果a>b>1,logan是O(logbn),但logbn不一定是O(logan)

解析:

logan=log(n)/log(a),logbn=log(n)/log(b),所以前者与后者只差了一个常数项,所以logbn一定是O(logan)

x=logaN,a为底数       log2(8) = log8/log2=3

 D、函数f(n)是O(g(n)),当常数a足够大时,一定有函数g(n)是O(af(n))

解析:当f(n)=n,g(n)=n*2=n*n, af(n)=a*n,无论a多大,g(n)都不可能是O(af(n))

2、已知一个数组a的长度为n,求问下面这段代码的时间复杂度: 

for (i=0,length=1;i<n-1;i++){

  for (j = i+1;j<n && a[j-1]<=a[j];j++)   //a[j-1]<=a[j]有序

    if(length<j-i+1)

      length=j-i+1;

}

解析

实际上是求a中有序子数组中最长的长度。譬如,在[1, 8, 1, 2, 5, 0, 11, 9]中,最长的是[1, 2, 5],长度为3 。其时间复杂度与a中元素的实际取值状态相关。 1)若a的所有元素是按照降序方式排列。则外层循环n-1次,每次内层只执行一次,整个开销为θ(n) 2)若a的所有元素是按照升序方式排列。则外层循环n-1次,每次内层需要执行n-i-1次,整个开销为θ(n^2) 所以,一般来说,时间复杂度是Ω(n)的,也是O(n^2)

3

4

解析:

5、2011年计算机联考真题(重做总结一遍)

解析:

6、2012年计算机联考真题

解析:

7、2013年计算机联考真题(重做总结一遍)

解析:

8、2014年计算机联考真题

9、2017年计算机联考真题(以后重做总结一遍)

解析:

10、

解析:

11(以后重做总结一遍)

解析:

12

解析:

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页